

Page 1 of 18

TEST REPORT IEC 62471 and/or EN 62471 Photobiological safety of lamps and lamp systems

F690501-RF-SAF002033
GPSA2111001054SF
Jisoo Lee
Aaron Kang
December 09, 2021
18 pages
SGS Korea Co., Ltd. Gunpo Laboratory
10-2, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807, Republic of Korea
iMediSync Inc.
5F, TIPS TOWN 3, 175, Yeoksam-ro, Gangnam-gu, Seoul, 06247, Republic of Korea
IEC 62471: 2006 (First Edition)☐ EN 62471: 2008
_
N/A
IEC62471B
VDE Testing and Certification Institute
Dated 2018-08-16
SGS Korea Co., Ltd. Gunpo Laboratory
TRF No. SAF7082-IEC62471B(2021/11/19)(1)
iSyncWave
-
iMediSync Inc./ Republic of Korea
TOTAL PA IDAGA
ISW-MJP101

Page 2 of 18 Report No.: F690501-RF-SAF002033

0	
Summary of testing:	
Equipment Measurement Distance 200 mm	
Tests performed (name of test and test clause):	Testing location:
4.3.1 Actinic UV hazard exposure limit for the skin	SGS Korea Co., Ltd.
and eye	10-2, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do,
4.3.2 Near-UV hazard exposure limit for eye	15807, Republic of Korea
4.3.3 Retinal blue light hazard exposure limit	
4.3.6 Retinal thermal hazard exposure limit – weak visual stimulus	
4.3.7 Infrared radiation hazard exposure limits for the eye	
4.3.8 Thermal hazard exposure limit for the skin	
Summary of compliance with National Differences	:
None	
Copy of marking plate:	
copy of marking plate.	

Page 3 of 18 Report No.: F690501-RF-SAF002033

Test item particulars	_
Tested lamp	□ continuous wave lamps □ pulsed lamps
Tested lamp system	_
Lamp classification group	☐ exempt ☐ risk 1 ☐ risk 2 ☐ risk 3
Lamp cap	_
Bulb:	_
Rated of the lamp	_
Furthermore marking on the lamp:	_
Seasoning of lamps according IEC standard:	_
Used measurement instrument:	Bentham IDR300-PSL
Temperature by measurement:	25 ± 5 ℃
Information for safety use:	_
Possible test case verdicts:	
test case does not apply to the test object:	N/A
test object does meet the requirement: :	P (Pass)
test object does not meet the requirement: :	F (Fail)
Testing:	
Date of receipt of test item:	November 18, 2021
Date (s) of performance of tests:	November 18, 2021
General remarks:	
Throughout this report a $igtimes$ comma / $igcap$ point is used a	as the decimal separator.
"(See Enclosure #)" refers to additional information app "(See appended table)" refers to a table appended to the Throughout this report a comma is used as the decimal	out the written approval of the Issuing testing laboratory. Deended to the report. The report. Il separator.
This document is issued by the Company subject to it available on request or accessible at http://www.sgs.co for electronic format documents, subject to Terms and	

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. This test report does not assure A2LA accreditation

the law."

Page 4 of 18 Report No.: F690501-RF-SAF002033

Manufacture	r's Declaration per sub-c	lause 4.2.5 of IECE	E 02:	
cludes more t tion from the I submitted for	on for obtaining a CB Test (han one factory location ar Manufacturer stating that th evaluation is (are) represen neach factory has been pro	nd a declara- ne sample(s) ntative of the	es lot applicable	
When differe	ences exist; they shall be	identified in the Go	eneral product information section	n.
Name and ad	ddress of factory (ies)	: iMe	diSync Inc.	
			TIPS TOWN 3, 175, Yeoksam-ro, 0 ul, 06247, Republic of Korea	Bangnam-gu,
General prod	duct information and oth	er remarks:		
- Tested by W	Vhite led mode.			
- LED packag	ge information			
LED Informati	ion			
	Manufacture	Model name	Electrical specification	
	EVERLIGHT Co.	HIR383C/L289	Vf: 1.80 – 2.40 V @lf: 100 mA	
				_

Page 5 of 18 Report No.: F690501-RF-SAF002033

		1 490 0 01 10	report to a record rail	, 002000
		IEC / EN 62471		
Clause	Requirement + Test		Result – Remark	Verdict

4	EXPOSURE LIMITS		_
4.1	General		Р
	The exposure limits in this standard is not less than 0,01 ms and not more than any 8-hour period and should be used as guides in the control of exposure		Р
	Detailed spectral data of a light source are generally required only if the luminance of the source exceeds 10 ⁴ cd·m- ²	see clause 4.3	Р
4.3	Hazard exposure limits		Р
4.3.1	Actinic UV hazard exposure limit for the skin and eye		Р
	The exposure limit for effective radiant exposure is 30 J·m-² within any 8-hour period		Р
	To protect against injury of the eye or skin from ultraviolet radiation exposure produced by a broadband source, the effective integrated spectral irradiance, Es, of the light source shall not exceed the levels defined by:		Р
	$E_{s} \cdot t = \sum_{200}^{400} \sum_{t} E_{\lambda}(\lambda, t) \cdot S_{UV}(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 30$ J·m ⁻²		Р
	The permissible time for exposure to ultraviolet radiation incident upon the unprotected eye or skin shall be computed by:		Р
	$t_{\text{max}} = \frac{30}{E_{\text{s}}}$ s		Р
4.3.2	Near-UV hazard exposure limit for eye		Р
	For the spectral region 315 nm to 400 nm (UV-A) the total radiant exposure to the eye shall not exceed 10000 J·m ⁻² for exposure times less than 1000 s. For exposure times greater than 1000 s (approximately 16 minutes) the UV-A irradiance for the unprotected eye, E _{UVA} , shall not exceed 10 W·m ⁻² .		Р
	The permissible time for exposure to ultraviolet radiation incident upon the unprotected eye for time less than 1000 s, shall be computed by:		Р
	$t_{\text{max}} \le \frac{10\ 000}{E_{\text{UVA}}} \qquad \text{s}$		Р
4.3.3	Retinal blue light hazard exposure limit		Р
	To protect against retinal photochemical injury from chronic blue-light exposure, the integrated spectral radiance of the light source weighted against the blue-light hazard function, B(λ), i.e., the blue-light weighted radiance , L _B , shall not exceed the levels defined by:		Р

Page 6 of 18 Report No.: F690501-RF-SAF002033

		19 - 1 - 1		
		IEC / EN 62471		
Clause	Requirement + Test		Result – Remark	Verdict

		Р
	$L_{B} \cdot t = \sum_{300}^{700} \sum_{t} L_{\lambda}(\lambda, t) \cdot B(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 10^6 \qquad J \cdot m^{-2} \cdot sr^{-1} for \ t \le 10^4 \ s \qquad t_{max} = \frac{10^6}{L_{B}}$	ľ
	$L_{\rm B} = \sum_{300}^{700} L_{\lambda} \cdot B(\lambda) \cdot \Delta \lambda \le 100$ $W \cdot m^{-2} \cdot sr^{-1}$ for $t > 10^4 \text{ s}$	Р
4.3.4	Retinal blue light hazard exposure limit - small source	N/A
	Thus the spectral irradiance at the eye E_{λ} , weighted against the blue-light hazard function $B(\lambda)$ shall not exceed the levels defined by:	N/A
	$E_{B} \cdot t = \sum_{300}^{700} \sum_{t} E_{\lambda}(\lambda, t) \cdot B(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 100 \qquad J \cdot m^{-2} for t \le 100 s$	N/A
	$E_{\rm B} = \sum_{300}^{700} E_{\lambda} \cdot B(\lambda) \cdot \Delta \lambda \le 1 \qquad \qquad \text{W} \cdot \text{m}^{-2} \qquad \text{for t > 100 s}$	N/A
4.3.5	Retinal thermal hazard exposure limit	N/A
	To protect against retinal thermal injury, the integrated spectral radiance of the light source, L_{λ} , weighted by the burn hazard weighting function $R(\lambda)$ (from Figure 4.2 and Table 4.2), i.e., the burn hazard weighted radiance, shall not exceed the levels defined by:	N/A
	$L_{\rm R} = \sum_{380}^{1400} L_{\lambda} \cdot R(\lambda) \cdot \Delta \lambda \le \frac{50000}{\alpha \cdot t^{0,25}} \qquad W \cdot m^{-2} \cdot sr^{-1} \qquad (10 \mu s \le t \le 10 s)$	N/A
4.3.6	Retinal thermal hazard exposure limit – weak visual stimulus	Р
	For an infrared heat lamp or any near-infrared source where a weak visual stimulus is inadequate to activate the aversion response, the near infrared (780 nm to 1400 nm) radiance, L _{IR} , as viewed by the eye for exposure times greater than 10 s shall be limited to:	Р
	$L_{\rm IR} = \sum_{780}^{1400} L_{\lambda} \cdot R(\lambda) \cdot \Delta \lambda \le \frac{6000}{\alpha} \qquad \qquad \text{W} \cdot \text{m}^{-2} \cdot \text{sr}^{-1} \text{t} > 10 \text{ s}$	Р
4.3.7	Infrared radiation hazard exposure limits for the eye	Р
	The avoid thermal injury of the cornea and possible delayed effects upon the lens of the eye (cataractogenesis), ocular exposure to infrared radiation, E _{IR} , over the wavelength range 780 nm to 3000 nm, for times less than 1000 s, shall not exceed:	Р
	$E_{\text{IR}} = \sum_{780}^{3000} E_{\lambda} \cdot \Delta \lambda \le 18000 \cdot t^{-0.75}$ $W \cdot m^{-2}$ $t \le 1000 \text{ s}$	Р
	For times greater than 1000 s the limit becomes:	Р

Page 7 of 18 Report No.: F690501-RF-SAF002033

	IEC / EN 62471	Troportito 1 00000 1 Tri O	
Clause	Requirement + Test	Result – Remark	Verdict
	Toquilomonic 1 7000	Treedit Tremain	Volunt
	$E_{\rm IR} = \sum_{780}^{3000} E_{\lambda} \cdot \Delta \lambda \le 100$ W·m ⁻²	t > 1000 s	Р
4.3.8	Thermal hazard exposure limit for the skin		Р
	Visible and infrared radiant exposure (380 nm to 3000 nm) of the skin shall be limited to:		Р
	$E_{\text{H}} \cdot t = \sum_{380}^{3000} \sum_{t} E_{\lambda}(\lambda, t) \cdot \Delta t \cdot \Delta \lambda \le 20000 \cdot t^{0.25}$ J·m ⁻²		Р
5	MEASUREMENT OF LAMPS AND LAMP SYSTEM	S	_
5.1	Measurement conditions		Р
	Measurement conditions shall be reported as part of the evaluation against the exposure limits and the assignment of risk classification.		Р
5.1.1	Lamp ageing (seasoning)		N/A
	Seasoning of lamps shall be done as stated in the appropriate IEC lamp standard.		N/A
5.1.2	Test environment		Р
	For specific test conditions, see the appropriate IEC lamp standard or in absence of such standards, the appropriate national standards or manufacturer's recommendations.		Р
5.1.3	Extraneous radiation		Р
	Careful checks should be made to ensure that extraneous sources of radiation and reflections do not add significantly to the measurement results.		Р
5.1.4	Lamp operation		Р
	Operation of the test lamp shall be provided in accordance with:		Р
	the appropriate IEC lamp standard, or		N/A
	the manufacturer's recommendation		Р
5.1.5	Lamp system operation		N/A
	The power source for operation of the test lamp shall be provided in accordance with:		N/A
	 the appropriate IEC standard, or 		N/A
	the manufacturer's recommendation		N/A
5.2	Measurement procedure		Р
5.2.1	Irradiance measurements		Р
	Minimum aperture diameter 7mm.		Р
	Maximum aperture diameter 50 mm.		Р
	The measurement shall be made in that position of		Р

Page 8 of 18 Report No.: F690501-RF-SAF002033

		IEC / EN 62471		
Clause	Requirement + Test		Result – Remark	Verdict

	the beam giving the maximum reading.		
	The measurement instrument is adequate calibrated.		Р
5.2.2	Radiance measurements		Р
5.2.2.1	Standard method		Р
	The measurements made with an optical system.		Р
	The instrument shall be calibrated to read in absolute radiant power per unit receiving area and per unit solid angle to acceptance averaged over the field of view of the instrument.		Р
5.2.2.2	Alternative method		N/A
	Alternatively to an imaging radiance set-up, an irradiance measurement set-up with a circular field stop placed at the source can be used to perform radiance measurements.		N/A
5.2.3	Measurement of source size		Р
	The determination of α , the angle subtended by a source, requires the determination of the 50% emission points of the source.		Р
5.2.4	Pulse width measurement for pulsed sources		N/A
	The determination of Δt , the nominal pulse duration of a source, requires the determination of the time during which the emission is > 50% of its peak value.		N/A
5.3	Analysis methods	1	Р
5.3.1	Weighting curve interpolations		Р
	To standardize interpolated values, use linear interpolation on the log of given values to obtain intermediate points at the wavelength intervals desired.	see table 4.1	Р
5.3.2	Calculations		Р
	The calculation of source hazard values shall be performed by weighting the spectral scan by the appropriate function and calculating the total weighted energy.		Р
5.3.3	Measurement uncertainty		N/A
	The quality of all measurement results must be quantified by an analysis of the uncertainty.		N/A
6	LAMP CLASSIFICATION		
	For the purposes of this standard it was decided that the values shall be reported as follows:	see table 6.1	Р
	 for lamps intended for general lighting service, the hazard values shall be reported as either ir- radiance or radiance values at a distance which produces an illuminance of 500 lux, but not at a 		N/A

Page 9 of 18 Report No.: F690501-RF-SAF002033

	IEC / EN 62471			
Clause	Requirement + Test	Result – Remark	Verdict	
	distance less than 200 mm			
	 for all other light sources, including pulsed lamp sources, the hazard values shall be reported at a distance of 200 mm 		Р	
6.1	Continuous wave lamps		Р	
6.1.1	Except Group		N/A	
	In the except group are lamps, which does not pose any photobiological hazard. The requirement is met by any lamp that does not pose:		N/A	
	 an actinic ultraviolet hazard (E_s) within 8-hours exposure (30000 s), nor 		N/A	
	 a near-UV hazard (E_{UVA}) within 1000 s, (about 16 min), nor 		N/A	
	 a retinal blue-light hazard (L_B) within 10000 s (about 2,8 h), nor 		N/A	
	 a retinal thermal hazard (L_R) within 10 s, nor 		N/A	
	 an infrared radiation hazard for the eye (E_{IR}) within 1000 s 		N/A	
6.1.2	Risk Group 1 (Low-Risk)		Р	
	In this group are lamps, which exceeds the limits for the except group but that does not pose:		Р	
	 an actinic ultraviolet hazard (Es) within 10000 s, nor 		Р	
	 a near ultraviolet hazard (E_{UVA}) within 300 s, nor 		Р	
	 – a retinal blue-light hazard (L_B) within 100 s, nor 		Р	
	 a retinal thermal hazard (L_R) within 10 s, nor 		Р	
	 an infrared radiation hazard for the eye (E_{IR}) within 100 s 		Р	
	Lamps that emit infrared radiation without a strong visual stimulus and do not pose a near-infrared retinal hazard ($L_{\rm IR}$), within 100 s are in Risk Group 1.		Р	
6.1.3	Risk Group 2 (Moderate-Risk)		N/A	
	This requirement is met by any lamp that exceeds the limits for Risk Group 1, but that does not pose:		N/A	
	an actinic ultraviolet hazard (Es) within 1000 s exposure, nor		N/A	
	 a near ultraviolet hazard (E_{UVA}) within 100 s, nor 		N/A	
	 a retinal blue-light hazard (L_B) within 0,25 s (aversion response), nor 		N/A	
	 a retinal thermal hazard (L_R) within 0,25 s (aversion response), nor 		N/A	

Page 10 of 18 Report No.: F690501-RF-SAF002033

IEC / EN 62471		
Requirement + Test	Result – Remark	Verdict
 an infrared radiation hazard for the eye (E_{IR}) within 10 s 		N/A
Lamps that emit infrared radiation without a strong visual stimulus and do not pose a near-infrared retinal hazard ($L_{\rm IR}$), within 10 s are in Risk Group 2.		N/A
Risk Group 3 (High-Risk)		N/A
Lamps which exceed the limits for Risk Group 2 are in Group 3.		N/A
Pulsed lamps		N/A
Pulse lamp criteria shall apply to a single pulse and to any group of pulses within 0,25 s.		N/A
A pulsed lamp shall be evaluated at the highest nominal energy loading as specified by the manufacturer.		N/A
The risk group determination of the lamp being tested shall be made as follows:		N/A
 a lamp that exceeds the exposure limit shall be classified as belonging to Risk Group 3 (High-Risk) 		N/A
 for single pulsed lamps, a lamp whose weighted radiant exposure or weighted radiance does is below the EL shall be classified as belonging to the Exempt Group 		N/A
 for repetitively pulsed lamps, a lamp whose weighted radiant exposure or weighted radiance dose is below the EL, shall be evaluated using the continuous wave risk criteria discussed in clause 6.1, using time averaged values of the pulsed emission 		N/A
	 an infrared radiation hazard for the eye (E_{IR}) within 10 s Lamps that emit infrared radiation without a strong visual stimulus and do not pose a near-infrared retinal hazard (L_{IR}), within 10 s are in Risk Group 2. Risk Group 3 (High-Risk) Lamps which exceed the limits for Risk Group 2 are in Group 3. Pulsed lamps Pulse lamp criteria shall apply to a single pulse and to any group of pulses within 0,25 s. A pulsed lamp shall be evaluated at the highest nominal energy loading as specified by the manufacturer. The risk group determination of the lamp being tested shall be made as follows: a lamp that exceeds the exposure limit shall be classified as belonging to Risk Group 3 (High-Risk) for single pulsed lamps, a lamp whose weighted radiant exposure or weighted radiance does is below the EL shall be classified as belonging to the Exempt Group for repetitively pulsed lamps, a lamp whose weighted radiance dose is below the EL, shall be evaluated using the continuous wave risk criteria discussed in clause 6.1, using time averaged values of the 	- an infrared radiation hazard for the eye (E _{IR}) within 10 s Lamps that emit infrared radiation without a strong visual stimulus and do not pose a near-infrared ret- inal hazard (L _{IR}), within 10 s are in Risk Group 2. Risk Group 3 (High-Risk) Lamps which exceed the limits for Risk Group 2 are in Group 3. Pulsed lamps Pulse lamp criteria shall apply to a single pulse and to any group of pulses within 0,25 s. A pulsed lamp shall be evaluated at the highest nominal energy loading as specified by the manu- facturer. The risk group determination of the lamp being tested shall be made as follows: - a lamp that exceeds the exposure limit shall be classified as belonging to Risk Group 3 (High-Risk) - for single pulsed lamps, a lamp whose weighted radiant exposure or weighted radiance does is below the EL shall be classified as belonging to the Exempt Group - for repetitively pulsed lamps, a lamp whose weighted radiant exposure or weighted radiance dose is below the EL, shall be evaluated using the continuous wave risk criteria discussed in clause 6.1, using time averaged values of the

Page 11 of 18 Report No.: F690501-RF-SAF002033

		1 490 11 01 10	report to it is of	" 002000
		IEC / EN 62471		
Clause	Requirement + Test		Result – Remark	Verdict

able 4.1 Spect	ral weig	hting function for assessing	ultraviolet hazards for sk	in and eye P
Wavelength λ, nm) ¹	UV hazard function S _ω (λ)	Wavelength λ, nm	UV hazard function S _ω (λ)
200		0,030	313*	0,006
205		0,051	315	0,003
210		0,075	316	0,0024
215		0,095	317	0,0020
220		0,120	318	0,0016
225		0,150	319	0,0012
230		0,190	320	0,0010
235		0,240	322	0,00067
240		0,300	323	0,00054
245		0,360	325	0,00050
250		0,430	328	0,00044
254*		0,500	330	0,00041
255		0,520	333*	0,00037
260		0,650	335	0,00034
265		0,810	340	0,00028
270		1,000	345	0,00024
275		0,960	350	0,00020
280*		0,880	355	0,00016
285		0,770	360	0,00013
290		0,640	365*	0,00011
295		0,540	370	0,000093
297*		0,460	375	0,000077
300		0,300	380	0,000064
303*		0,120	385	0,000053
305		0,060	390	0,000044
308		0,026	395	0,000036
310		0,015	400	0,000030

Wavelengths chosen are representative: other values should be obtained by logarithmic interpolation at intermediate wavelengths.

^{*} Emission lines of a mercury discharge spectrum.

Page 12 of 18 Report No.: F690501-RF-SAF002033

			002000
	IEC / EN 62471		
Clause	Requirement + Test	Result – Remark	Verdict

Wavelength nm Blue-light hazard function B (λ) Burn hazard function R (λ) 300 0,01 305 0,01 310 0,01 315 0,01 320 0,01 325 0,01 330 0,01 340 0,01 345 0,01 355 0,01 360 0,01 370 0,01 385 0,01 385 0,01 385 0,01 385 0,01 385 0,01 385 0,01 385 0,01 385 0,01 385 0,01 385 0,01 385 0,01 385 0,01 385 0,01 385 0,01 385 0,013 385 0,013 385 0,013 385 0,02 400	Table 4.2	Spectral weighting sources	functions for assessing retinal hazards for	rom broadband optical
305	,	_		
305		300	0,01	
310		305		
315 0,01 320 0,01 320 0,01 325 0,01 330 0,01 335 0,01 346 0,01 345 0,01 350 0,01 355 0,01 355 0,01 360 0,01 365 0,01 375 0,01 375 0,01 375 0,01 375 0,01 375 0,01 388 0 0,01 375 0,01 388 0 0,01 375 0,01 388 0 0,01 388 0 0,01 388 0 0,01 399 0 0,025 0,25 395 0,05 395 0,05 395 0,05 395 0,05 400 0,10 1,0 405 0,20 2,0 410 0,40 4,0 4415 0,80 8,0 8,0 420 0,90 9,0 9,0 425 0,95 430 0,98 9,8 435 1,00 10,0 10,0 10,0 445 0,98 9,8 435 1,00 10,0 10,0 10,0 445 0,97 9,7 450 0,98 9,8 435 1,00 10,00 10,0 10,0 445 0,97 9,7 450 0,98 9,8 435 1,00 10,00 10,0 445 0,97 9,7 450 0,98 9,8 435 1,00 10,00 10,0 445 0,97 9,7 450 0,98 9,8 486 0,99 9,0 426 0,99 9,0 427 0,90 9,0 428 0,99 9,0 440 1,00 10,0 10,0 445 0,97 9,7 450 0,98 9,8 486 0,97 9,7 450 0,94 9,4 440 1,00 10,0 10,0 445 0,97 9,7 450 0,94 9,4 440 1,00 10,0 445 0,97 9,7 450 0,94 9,4 440 1,00 10,0 10,0 445 0,97 9,7 450 0,94 9,4 440 1,00 10,0 445 0,97 7,0 470 0,62 6,2 475 0,55 5,5 5,5 480 0,94 9,4 490 0,22 2,2 495 0,16 1,6 500-600 10[650-1/50] 1,0 10[650-1/50] 1,0 10[6700-1/50				
320				
325		320		
330		325		
335				
345		335	0,01	
350		340	0,01	
350		345		
355				
360				
365				
370				
375				
380 0,01 0,13 0,13 385 0,013 0,13 390 0,025 0,25 395 0,05 0,5 400 0,10 1,0 1,0 405 0,20 2,0 410 4,0 4,0 415 0,80 8,0 420 0,90 9,0 425 0,95 430 0,98 9,8 435 1,00 10,0 10,0 445 0,97 9,7 450 0,94 9,4 455 0,95 0,94 9,4 455 0,96 0,94 9,4 455 0,96 0,94 9,0 466 0,80 8,0 465 0,770 7,0 470 0,62 6,2 475 0,55 5,5 480 0,45 485 0,45 490 0,22 2 2,2 495 0,16 500-600 1050-1150 0,2 1050-1150 0,22 1150-1200 1050-1150 0,22 1150-1200 10,0				
385 0,013 0,13 390 0,025 0,25 395 0,05 0,5 400 0,10 1,0 405 0,20 2,0 410 0,40 4,0 415 0,80 8,0 420 0,90 9,0 425 0,95 9,5 430 0,98 9,8 435 1,00 10,0 445 0,97 9,7 450 0,94 9,4 455 0,97 9,7 450 0,94 9,4 455 0,96 0,90 9,0 466 0,80 8,0 470 0,62 6,2 477 0,62 6,2 477 0,65 0,40 4,5 485 0,40 4,0 490 0,22 2,2 495 0,16 1,6 500-600 1(((450-λ)/50)) 1,0 600-700 0,001 10,0 700-1050 1(((700-λ)/500)) 1((((700-λ)/500)) 1(((700-λ)/500)) 1((((700-λ)/500)) 1((((700-λ)/500))) 1((((700-λ)/500)) 1((((700-λ)/500))) 1((((700-λ)/500)) 1((((700-λ)/500))) 1((((700-λ)/500)) 1((((700-λ)/500)) 1((((700-λ)/500)) 1((((700-λ)/500))) 1((((700-λ)/500))) 1((((700-λ)/500)) 1((((700-λ)/500))) 1((((700-λ)/500)) 1((((700-λ)/500))) 1((((700-λ)/500))) 1((((700-λ)/500)) 1((((700-λ)/500))) 1((((700-λ)/500))) 1((((700-λ)/500)) 1((((700-λ)/500))) 1(((((1150-λ)/500))) 1((((1150-λ)/500))) 1((((0,1
390				
395				
400 0,10 1,0 405 0,20 2,0 410 0,40 4,0 415 0,80 8,0 420 0,90 9,0 425 0,95 9,5 430 0,98 9,8 435 1,00 10,0 440 1,00 10,0 445 0,97 9,7 450 0,94 9,4 455 0,90 9,0 460 0,80 8,0 465 0,70 7,0 470 0,62 6,2 475 0,55 5,5 480 0,45 4,5 485 0,40 4,0 490 0,22 2,2 495 0,16 1,6 500-600 10[(450-λ)/50] 1,0 600-700 0,001 1,0 700-1050 10(700-λ)/500] 10(700-λ)/500] 1050-1150 0,2-100.02(1150-λ) 0,2-100.02(1150-λ)				
405 0,20 2,0 410 0,40 4,0 415 0,80 8,0 420 0,90 9,0 425 0,95 9,5 430 0,98 9,8 435 1,00 10,0 440 1,00 10,0 445 0,97 9,7 450 0,94 9,4 455 0,90 9,0 460 0,80 8,0 465 0,70 7,0 470 0,62 6,2 475 0,55 5,5 480 0,45 4,5 485 0,40 4,0 490 0,22 2,2 495 0,16 1,6 500-600 10[(450-λ)/50] 1,0 600-700 0,001 1,0 700-1050 10[(700-λ)/500] 10[(700-λ)/500] 1150-1200 0,2:100-02(1150-λ) 0,2:100-02(1150-λ)				
410 0,40 4,0 415 0,80 8,0 420 0,90 9,0 425 0,95 9,5 430 0,98 9,8 435 1,00 10,0 440 1,00 10,0 445 0,97 9,7 450 0,94 9,4 455 0,90 9,0 460 0,80 8,0 465 0,70 7,0 470 0,62 6,2 475 0,55 5,5 480 0,45 4,5 485 0,40 4,0 490 0,22 2,2 495 0,16 1,6 500-600 10[(450-λ)/50] 1,0 600-700 0,001 1,0 700-1050 10(700-λ)/500] 1,0 1050-1150 0,2 0,2:100.02(1150-λ)				
415 0,80 8,0 420 0,90 9,0 425 0,95 9,5 430 0,98 9,8 435 1,00 10,0 440 1,00 10,0 445 0,97 9,7 450 0,94 9,4 455 0,90 9,0 460 0,80 8,0 465 0,70 7,0 470 0,62 6,2 475 0,55 5,5 480 0,45 4,5 485 0,40 4,0 490 0,22 2,2 495 0,16 1,6 500-600 10[(450-λ)/50] 1,0 600-700 0,001 1,0 700-1050 10[(700-λ)/500] 0,2 1150-1200 0,2100.02(1150-λ) 0,2100.02(1150-λ)				
420 0,90 9,0 425 0,95 9,5 430 0,98 9,8 435 1,00 10,0 440 1,00 10,0 445 0,97 9,7 450 0,94 9,4 455 0,90 9,0 460 0,80 8,0 465 0,70 7,0 470 0,62 6,2 475 0,55 5,5 480 0,45 4,5 485 0,40 4,0 490 0,22 2,2 495 0,16 1,6 500-600 10[(450-k)/50] 1,0 600-700 0,001 1,0 700-1050 10[(700-k)/500] 1050-1150 0,2 1150-1200 0,2:10 ^{0,02(1150-k)}				
425 0,95 9,5 430 0,98 9,8 435 1,00 10,0 440 1,00 10,0 445 0,97 9,7 450 0,94 9,4 455 0,90 9,0 460 0,80 8,0 465 0,70 7,0 470 0,62 6,2 475 0,55 5,5 480 0,45 4,5 485 0,40 4,0 490 0,22 2,2 495 0,16 1,6 500-600 10[(450-λ)/50] 1,0 600-700 0,001 1,0 700-1050 10[(700-λ)/500] 1050-1150 0,2 1150-1200 0,2:10 ^{0,02(1150-λ)}				
430 0,98 9,8 435 1,00 10,0 440 1,00 10,0 445 0,97 9,7 450 0,94 9,4 455 0,90 9,0 460 0,80 8,0 465 0,70 7,0 470 0,62 6,2 475 0,55 5,5 480 0,45 4,5 485 0,40 4,0 490 0,22 2,2 495 0,16 1,6 500-600 10[(450-A)/50] 1,0 600-700 0,001 1,0 700-1050 100-000/2(1150-A) 1050-1150 0,2-100.02(1150-A)				
435 1,00 10,0 440 1,00 10,0 445 0,97 9,7 450 0,94 9,4 455 0,90 9,0 460 0,80 8,0 465 0,70 7,0 470 0,62 6,2 475 0,55 5,5 480 0,45 4,5 485 0,40 4,0 490 0,22 2,2 495 0,16 1,6 500-600 10[(450-λ)/50] 1,0 600-700 0,001 1,0 700-1050 1050-1150 0,2 1150-1200 0,2:100.02(1150-λ)				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				· · · · · · · · · · · · · · · · · · ·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
600-700 0,001 1,0 700-1050 10 ^[(700-λ)/500] 1050-1150 0,2 1150-1200 0,2·10 ^{0,02(1150-λ)}				
$700-1050$ $10^{[(700-\lambda)/500]}$ $1050-1150$ $0,2$ $1150-1200$ $0,2\cdot 10^{0,02(1150-\lambda)}$				
1050-1150 0,2 1150-1200 0,2·10 ^{0,02(1150-λ)}			,,,,,,	1 Ω [(700-λ)/500]
1150-1200 0,2·10 ^{0,02(1150-λ)}				
				· · · · · · · · · · · · · · · · · · ·

Page 13 of 18 Report No.: F690501-RF-SAF002033

	9-		
	IEC /	EN 62471	
Clause	Requirement + Test	Result – Remark	Verdict

Table 5.4	Su	mmary of the ELs for the	surface of the sk	kin or cornea (i	rradiance bas	sed values)	Р
Hazard Name		Relevant equation	Wavelength range nm	Exposure duration sec	Limiting aperture rad (deg)	EL in terms stant irrac W•m	diance
Actinic UV skin & eye		$E_S = \sum E_\lambda \bullet S(\lambda) \bullet \Delta \lambda$	200 – 400	< 30000	1,4 (80)	30/t	
Eye UV-A		$E_{UVA} = \sum E_{\lambda} \bullet \Delta \lambda$	315 – 400	≤1000 >1000	1,4 (80)	10000 10)/t
Blue-light small source	;	$E_B = \sum E_\lambda \bullet B(\lambda) \bullet \Delta \lambda$	300 – 700	≤100 >100	< 0,011	100/ 1,0	t
Eye IR		$E_{IR} = \sum E_{\lambda} \bullet \Delta \lambda$	780 –3000	≤1000 >1000	1,4 (80)	18000/t 100	
Skin thermal		$E_H = \sum E_\lambda \bullet \Delta \lambda$	380 – 3000	< 10	2π sr	20000/t	0,75

Table 5.5	Sun	nmary of the ELs for the	e retina (radian	ce based valu	es)		Р
Hazard Nan	ne	Relevant equation	Wavelength range nm	Exposure duration sec	Field of view radians	EL in ter constant r W•m ⁻²	adiance
Blue light		$L_{B} = \sum L_{\lambda} \bullet B(\lambda) \bullet \Delta \lambda$	300 – 700	0,25 - 10 10-100 100-10000 ≥ 10000	0,011•√(t/10) 0,011 0,0011•√t 0,1	10 ⁶ 10 ⁶ 10 ⁶ 10 ⁶	/t /t
Retinal thermal		$L_{R} = \sum L_{\lambda} \cdot R(\lambda) \cdot \Delta \lambda$	380 – 1400	< 0,25 0,25 – 10	0,0017 0,011•√(t/10)	50000/(d 50000/(d	,
Retinal thermal (weak visual stimulus)		$L_{IR} = \sum L_{\lambda} \cdot R(\lambda) \cdot \Delta \lambda$	780 – 1400	> 10	0,011	6000)/α

Page 14 of 18 Report No.: F690501-RF-SAF002033

		<u> </u>	1	
		IEC / EN 62471		
Clause	Requirement + Test		Result – Remark	Verdict

	EN 62471		
Clause	Requirement + Test	Result - Remark	Verdict
	CENELEC COMMON MODIFICATIONS (EN)		_
4	EXPOSURE LIMITS		_
	Contents of the whole Clause 4 of IEC 62471:2006 moved into a new informative Annex ZB		
	Clause 4 replaced by the following:		N/A
	The original Clause 4 of IEC 62471:2006 contains provisions governing limiting values for the exposure of persons falling within the area of the health and safety of workers. Within Europe those limiting values are already covered by the Artificial Optical Radiation Directive (2006/25/EC). Thus, the limits of the directive have to be applied instead of those fixed in IEC 62471:2006.		N/A
	There are no differences in EN 62471:2008 regarding the classification of lamps according Clause 6 of IEC 62471:2006.		_
4.1	General		N/A
	Delete the first paragraph.		_

Page 15 of 18

Report No.: F690501-RF-SAF002033

	IEC / EN	N 62471	
Clause	Requirement + Test	Result – Remark	Verdict

Table 6.1	Emission limits for risk groups of continuous wave lamps	for risk group	s of continuo	us wave lamp	SC				۵
						Emission Measurement	sasurement		
Risk	Action	Symbol	Units	Exempt	mpt	Low risk	risk	Mod risk	risk
				Limit	Result	Limit	Result	Limit	Result
Actinic UV	S _{UV} (λ)	Es	W•m-²	0,001	1,21E-05	0,003	n/a	0,03	
Near UV		Euva	W•m-²	10	1,56E-05	33	n/a	100	
Blue light	Β(λ)	LB	W•m ⁻² •sr ⁻¹	100	4,99E-05	10000	n/a	4000000	
Blue light, small source	B(A)	EB	W•m-²	1,0*		1,0		400	
Retinal thermal	R(λ)	LR	W•m ⁻² •sr ⁻¹	28000/α = 280000		28000/α = 280000		71000/α = 710000	
Retinal thermal, weak visual stimulus**	R(A)	LıR	W•m-2•sr-1	6000/a =	8,13E+05	6000/a =	782,368 5	6000/α = 60000	
IR radiation, eye		ER	W•m-²	100	0,2882	920		3200	

^{*} Small source defined as one with α < 0,011 radian. Averaging field of view at 10000 s is 0,1 radian. ** Involves evaluation of non-GLS source

Report No.: F690501-RF-SAF002033

Photo documentation

External view

External view

Report No.: F690501-RF-SAF002033

Internal view

LED view

Furthermore remarks

* Resulting IEC 62471 Classification and Labelling

Hazard	Risk Group
Actinic UV	Exempt
Near UV	Exempt
Blue Light	Exempt
Retinal Thermal	Group 1
Weak Visual	
Infrared	Exempt
Thermal Skin	Pass

Report No.: F690501-RF-SAF002033

- End of test report -