Alzheimer's Disease Dementia Classifying Artificial IntelligentModel by Using Brain Functional Network from Electroencephalography

Yuseong Hong¹, Ukeob Park¹, Young Chul Yoon², Seung Wan Kang^{1,3} (1) iMediSync, Inc., Seoul, South Korea (2) Department of Neurology, Chung-Ang University of College of Medicine, Seoul, South Korea (3) Data Center for Korean EEG, College of Nursing, Seoul National University, Seoul, South Korea

High AD dementia classifying performance through AI model adopting brain functional network from EEG

INTRODUCTION

- Alzheimer's disease dementia (ADD) is the most common and dangerous neurodegenerative disorder.
- However, it mainly depends on self or clinical way to diagnose one subject with dementia.
- Electroencephalography (EEG) is easy to use, cheap and it can present fast results by using real time signal.
- We propose artificial intelligent (AI) model to classify the ADD subject with non-ADD one by adopting EEG.

METHODS

- EEG data recorded from 10-20 system with eye closed and resting state.
- 68 regions of interests (ROIs) from 19 channel using standardized low resolution brain electromagnetic tomography (sLORETA).
- Functional network using imaginary part of coherence (iCoh) of two ROIs
- The subjects divided into non-ADD group and ADD group.
- The ADD classifying AI model using 68 source ROIs features and network features from functional brain network.

P1-00 iMediSync

REFERENCES

- 1. Rostamzadeh A, et al. (2022)
- 2. Brunner C, et al. (2016)
- 3. Pascual-Marqui RD, et al. (1994)

CONTACT

hongys26@imedisync.com

seungwkang@imedisync.com

iMediSync, Inc. https://www.imedisync.com/en/

ALZHEIMER'S ASSOCIATION ALZHEIMER'S AAC 23 ASSOCIATION INTERNATIONAL CONFERENCE®