Alzheimer's Disease Dementia Classification Through Residual Network and QEEG Image Representations

Taegyun Jeong¹ (MSc), Ukeob Park¹ (MSc), Yuseong Hong¹ (MSc), Young Chul Youn² (MD, PhD), Seung Wan Kang^{1,3} (MD, PhD)

(1) iMediSync, Inc., Seoul, South Korea, (2) Department of Neurology, Chung-Ang University College of Medicine, Seoul, South Korea, (3) Data Center for Korean EEG, College of Nursing, Seoul National University, Seoul, South Korea

INTRODUCTION

- **Cognitive functions** are complexly coordinated to allow us carry out daily tasks.
- Severe deterioration of cognitive functions, namely dementia, adversely affects our life quality.
- Alzheimer's disease (AD) is one of the most common causes of dementia, which results from amyloid plaques in our brain.
- Positron emission tomography (PET) can be adopted for the screening of amyloid plaques.
- However, it is expensive and results in exposure to harmful ionizing radiation.
- The present study elaborates on the residual network-based model that successfully differentiates quantitative electroencephalogram (QEEG) data of AD dementia (ADD) patients.

METHODS

- **Eyes-closed**, resting state EEG data employed in the present study were recorded at 19 channels defined by the international 10-20 system.
- Figure 1 summarizes the data preprocessing procedures.

Z)	 Time-series data were converted into frequency domain (1-45Hz) power spectra with 0.25Hz resolution through fast-Fourier 	 Initial dataset: N = 7 ADD.
	transform.	• 75% of the non-ADD
	 Age- and sex-standardized Z-scores of the 	as test data due to c
	acquired power spectrum were calculated through iMediSync's normative database (NMale = 553, NFemale = 736).	 The remaining data test data, 8:2 ratio.
CG)	 Gamma fequency band (30-45Hz) was excluded due to its vulnerability to external 	 Final test dataset: N non-ADD.
	noises and muscle movements.	 Final train dataset: N non-ADD.
	 The power spectrum was rearranged into a feature matrix according to spatial locations 	
ssing	of EEG channels (Figure 2).	RESULTS

- Our 18-layer ResN following test evalu
 - 88.5% accura
 - 88.9% ADD s
 - 88.4% ADD s

P1-00

732; 137 ADD, 476 non-		CONCLUSIONS
) data were first excluded data imbalance. were split into train and I = 503; 27 ADD; 476		 The classification results of the established model upholds QEEG utility in the distinguishment of Alzheimer's disease dementia from its pre-clinical stages. Continuous refinement will bolster its potential in the diagnosis several other neurological diseases.
N = 229; 110 ADD; 119		CONTACT
et model showed the uation performance: acy sensitivity		Corresponding author: Seung Wan Kang Email: seungwkang@imedisync.com "Conquer dementia through QEEG-based AI"
specificity sion matrix ae ADD 24	True LBD 55	iMediSync, Inc. Website: <u>https://www.imedisync.com/en/</u> Visit our website or send us an email if you wish to explore our products or become our research partner.
3 onfusion ma	421 atrix	ALZHEIMER'S ASSOCIATION ALZHEIMER'S ASSOCIATION ASSOCIATION INTERNATIONAL CONFERENCE®