Screening of Mild Cognitive Impairment Subtypes Through the Training of 1D Convolutional Neural Network with QEEG Features

Juhee Ko¹, Boeun Choi¹ (MSc), Ukeob Park¹ (MSc), Kyoungwon Baik² (MD), Byoung Seok Ye² (MD, PhD), Seung Wan Kang^{1,3} (MD, PhD) (1) iMediSync, Inc., Seoul, South Korea, (2) Yonsei University College of Medicine, Seoul, South Korea, (3) Data Center for Korean EEG, College of Nursing, Seoul National University, Seoul, South Korea

Classifier of MCI subtype based on LBD component using QEEG-based deep learning model

	INTRODUCTION		METHODS
•	The pre-clinical stage of dementia, mild cognitive impairment (MCI) carries various pathological pathways and respective prognoses.	•	A total of 180 MCI patients' EEG data were aggregated into 3 groups, pure AD (n=29), LBD(n=88), and mixed (n=63). The mixed further subdivided into main AD (n=31) and (n=29)and main LBD(n=3) groups, in acco with AD/LBD tendency exhibited by the pat
•	The two foremost causes of MCI and dementia are Alzheimer's disease (AD)	•	The clinical labelling was brought by the experienced experts of Yonsei Severance South Korea.
	(LBD) respectively, and large-scale autopsy studies show that 43-53% of cases have two or more	•	1D SE-ResNet-based classification model was established for quantitative investigat and LBD propensity.
	neurodegenerative diseases[1].	•	The power spectrum density (PSD) in dB/ were computed from the EEG data that wa measured in 19-channels from subjects' so
•	In particular, AD patients with LBD show more rapid cognitive decline and disease progression than		sites corresponding to the international 10 system and 19-channels PSD data were ta the input of the classification models.
	patients with AD alone[1][3].	•	Due to the small number of data, augmen applied to the training data. The augmenta
•	Hence, correct identification of AD and LBD in MCI patients plays a crucial role in effective designing of treatment methods.		method is illustrated in Figure 2. Initially, i data is segmented into 4-second epochs the cropping. Subsequently, the absolute PSD calculated for each epoch, and a random so of PSD data is made. The chosen PSD data averaged and transformed to the dB/Hz sc
•	We utilized quantitative electroencephalography (QEEG) to generate a classifier that discriminates the degree of LBD in MCI.	•	The final dataset was split into 8 to 1 to 1 (Train n=5968: 2274 pure AD + main AD; 3 LBD + main LBD, Validation n=40: 3 pure / main AD; 8 Pure LBD + 26 Mixed, Test n=1 AD + 3 main AD; 9 pure LBD + 3 Mixed).

Pure LBD

Total

71

122

Table1. The number of train data (EEG data)

3541

5968

RESULTS

The confusion matrix of classification models are shown in Table2.Validation results of And test results were at 83.3% accuracy,

Validation	pred LBD(-)	pred LBD(+)	Test	pred LBD(-)	pred LBD(+)
pure AD	3	0	pure AD	3	0
main AD	2	1	main AD	2	1
Mixed	8	18	Mixed	1	2
pureLBD	2	6	pureLBD	1	8

Table 2. confusion matrix of Validation & Test results

Based on the XAI results shown in Figure 3, the classifier model exhibits significant attention to the Delta band (1-4Hz) for prediction, followed by theta and alpha bands in terms of weighting. MCI-LBD tends to show a relatively slower this reasonable aspect.

(b) class - mainAD (c) class- pureLBD

ratio 3694 pure

AD + 3 8: 3 pure

CONCLUSIONS

83.3% AD sensitivity and 70.6% LBD sensitivity. 83.3% AD sensitivity and 83.3% LBD sensitivity.

qEEG main frequency compared to MCI-AD [2], and our model also appears to pay attention to

- QEEG-based deep learning classifier developed in this study successfully distinguished the degree of LBD in MCI patients.
- Our model can help identify subtype-specific spectral trends, which could also make contributions in the establishment of effective treatment methods for MCI.

REFERENCES

[1] L. Walker et al., "Neuropathologically mixed Alzheimer's and Lewy body disease: burden of pathological protein aggregates differs between clinical phenotypes," Acta Neuropathologica, vol. 129, no. 5. Springer Science and Business Media LLC, pp. 729–748, Mar. 11, 2015. doi: 10.1007/s00401-015-1406-3.

[2] Massa, F., Meli, R., Grazzini, M., Famà, F., De Carli, F., Filippi, L., Arnaldi, D., Pardini, M., Morbelli, S., & Nobili, F. (2020). Utility of quantitative EEG in early Lewy body disease. In Parkinsonism & amp; Related Disorders (Vol. 75, pp. 70–75). Elsevier BV. https://doi.org/10.1016/j.parkreldis.2020.05.007

[3] Baik, K., Jung, J.H., Jeong, S.H. et al. Implication of EEG theta/alpha and theta/beta ratio in Alzheimer's and Lewy body disease. Sci Rep 12, 18706 (2022). https://doi.org/10.1038/s41598-022-21951-5

CONTACT

- **Presenting author**: Juhee Ko Email: juhee@imedisync.com
- Corresponding author:
- 1) Byoung Seok Ye Email: <u>romel79@yuhs.ac</u>
- 2) Seung Wan Kang Email: <u>seungwkang@imedisync.com</u>

iMediSync, Inc.

Website: <u>https://www.imedisync.com/en/</u> Yonsei University College of Medicine Website: https://medicine.yonsei.ac.kr/medicine-en/

