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“Identify dementia pathologies through QEEG”

• Alzheimer ’s disease (AD) ,  the most 
common cause of dementia,  destroys 
nerve cel ls in the brain through 
accumulat ion of beta amyloid plaques .

• However,  var ious other pathologies of 
dementia also exist ,  such as accumulat ion 
of Lewy body (LB) peptides .  

• Di fferent dementia pathologies carry 
dist inguishing symptoms and treatment 
methods; hence we cannot disregard the 
importance of correct ident i f icat ion of the 
pathology.

• Posi tron emission tomography (PET) is 
widely used to screen for pathologies. 
However,  i t  is  expensive and resul ts in 
exposure to harmful ionizing radiation .  

• Therefore, the present study proposes a 
quant i tat ive electroencephalography 
(QEEG)-based screening method which 
overcomes the disadvantages of current 
screening methods.

• sLORETA was used to est imate source 
cort ical  act iv i ty at  68 regions def ined by 
the Desikan-Ki l l iany at las. 

• The f inal  dataset:  N = 104; 30 AD; 74 LB .  

• 20% of the data were randomly selected 
as test data.

• Tree-based algor i thms – Random forest,  
XGBoost,  L ightGBM were trained wi th 
var ious sets of   key hyperparameters.  

• Feature reduction criteria:
• Features with p-value < 0.05.
• Feature importance determined through 

Shapley values.
• Exclusion of gamma band (30-45Hz) 

features due to its vulnerability to high-
frequency noise. 

• The classi f icat ion model  developed in 
the present study showed a promising 
classi f icat ion performance, through 
quant i tat ive EEG data which is cheap 
and harmless to record .

• Such QEEG-based classi f icat ion 
models carry a great potent ia l  to 
replace the PET in future, resolv ing 
convent ional  d isadvantages.
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Tab le  1 .  Confus ion  mat r i x  

F igure  2 .  Top  20  fea tu res  tha t  ma in ly  a f fec ted  c lass i f i ca t ion  resu l t s

• EEG data employed in the present study 
were recorded at e lectrode locat ions 
def ined by the internat ional  10-20 system, 
in eyes-closed rest ing-state condi t ion. 

• Figure 1 summarizes the data 
preprocessing/ denois ing procedure.
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Figure  1 .  Preprocess ing /  deno is ing  p rocedure

• The best c lassi f icat ion performance was achieved by an XGBoost model ,  wi th test accuracy 
of 85.7%, AD dementia (ADD) sensi t iv i ty of  83.3% and LB Dementia (LBD) sensi t iv i ty of  
86.7% .  5- fo ld cross val idat ion accuracy was at 82.1% .

• Major i ty of  the features wi th high importance 
values were related to del ta (1-4Hz),  a lpha1 
(8-10 Hz),  a lpha2 (10-12Hz),  beta2 (15-20Hz) 
and beta3 (20-30Hz) frequency bands.

• Through a group comparison, we further 
ver i f ied that LBD delta and alpha band (8-12 
Hz) powers are stronger than that of  ADD, 
and LBD beta band (15-30 Hz)power is 
weaker than that of  ADD.
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