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Introduction

Results

● β-Amyloid is a peptide found in patients with Alzheimer’s
disease, which from amyloid plaques in the brain.

● The composition and population of β-Amyloid peptides 
correlates to the clinical status of the patients.

● Thus, detection of the β-Amyloid peptide is crucial for early 
screening and prevention of Alzheimer dementia.

● Amyloid Positron Emission Tomography (Amyloid PET) 
employing 18-F labelled radiopharmaceuticals is popularly 
adopted for screening of the peptide/plaques.

● There are several disadvantages of Amyloid PET, the 
imaging process exposes the patient to a high dose of 
harmful ionizing radiation and could be very costly.

● This research aims to develop a novel β-Amyloid screening 
method overcoming the disadvantages.

Figure 1: The sensor level imaginary coherence feature map 
employed for training/testing of the model

Conclusions

● The EEG signal employed in this research has been 
measured at 19 electrode locations in correspondence to the 
10-20 system.

● iSyncBrain® platform was used for preprocessing 
procedures, which includes Independent Component Analysis 
(ICA) and bad epoch rejection.

● Preprocessed signals were then band pass filtered into 
eight different frequency bands: Delta (1-4Hz); Theta (4-8Hz); 
Alpha1 (8-10Hz); Alpha2 (10-12Hz); Beta1 (12-15Hz); Beta2 
(15-20Hz); Beta3 (20-30Hz); Gamma (30-45Hz). 

● Signals which fall under Delta and Gamma frequency bands 
were excluded from the scope of interest due to a high 
chance of noise contamination. 

● The imaginary coherences were selected as feature values 
which represent phase differences among the signals at 
locations specified by the 10-20 system. 

● The feature values were then normalized at each frequency 
bands.

● Sensor-level imaginary coherence feature map (see figure 1 
below) was yielded through horizontal concatenation of the 
normalized matrices.

● The class labelling was done through Amyloid PET results.

● Data augmentation was performed on β-Amyloid positive 
class through splitting of the data in time series, with the aim 
to overcome the class imbalance. 

● Sensor-level imaginary coherence feature maps were 
produced for each subjects, comprising the augmented 
dataset.

● The final training dataset consists of 138 β-Amyloid positive 
data and 143 β-Amyloid negative data.

● The final test dataset consists of 61 β-Amyloid positive data 
and 33 β-Amyloid negative data.

Methods Pred Amyloid + Pred Amyloid -

Real Amyloid + 57 4

Real Amyloid - 2 31

Table 1: Confusion matrix for test set classification

● The β-Amyloid screening model adopting machine learning 
algorithm has yielded test sensitivity at 0.934 and specificity 
at 0.939.

● 5-fold cross validation was performed on the training 
dataset, which returned the sensitivity at 0.884 and specificity 
at 0.923.

● The machine learning model developed in this research 
achieved outstanding classification results.

● Such QEEG based model may sufficiently replace Amyloid 
PET for screening of the β-Amyloid plaque, resolving 
previously discussed disadvantages.

● Sensor level imaginary coherences are statistically more 
robust than source level imaginary coherences, free from 
errors accumulated during source location calculation process.

● Therefore, correct and appropriate application of the sensor 
level imaginary coherences may aid screening of several 
other neurological diseases.
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