

# Machine Learning-based Amyloid Pathology Screening Model Using QEEG Sensor Level Imaginary Coherence



#### Taegyun Jeong<sup>1</sup>, Ukeob Park<sup>1</sup>, Sohyeon Jeon<sup>1,2</sup>, Seung Wan Kang<sup>1,3</sup>

- 1. iMediSync Inc., Seoul, South Korea
- 2. Department of Software Engineering, Samyuk University, Seoul, South Korea
- 3. National Standard Reference Data Center for Korean EEG, Seoul National University College of Nursing, Seoul, South Korea

## Introduction

 $\bullet$   $\beta$ -Amyloid is a peptide found in patients with Alzheimer's disease, which from amyloid plaques in the brain.

• The composition and population of  $\beta$ -Amyloid peptides correlates to the clinical status of the patients.

• Thus, detection of the  $\beta$ -Amyloid peptide is crucial for early screening and prevention of Alzheimer dementia.

• Amyloid Positron Emission Tomography (Amyloid PET) employing 18-F labelled radiopharmaceuticals is popularly adopted for screening of the peptide/plaques.

• There are several disadvantages of Amyloid PET, the imaging process exposes the patient to a high dose of harmful ionizing radiation and could be very costly.

 $\bullet$  This research aims to develop a novel  $\beta\mbox{-}Amyloid$  screening method overcoming the disadvantages.

# Methods

• The EEG signal employed in this research has been measured at 19 electrode locations in correspondence to the 10-20 system.

• iSyncBrain® platform was used for preprocessing procedures, which includes Independent Component Analysis (ICA) and bad epoch rejection.

• Preprocessed signals were then band pass filtered into eight different frequency bands: Delta (1-4Hz); Theta (4-8Hz); Alpha1 (8-10Hz); Alpha2 (10-12Hz); Beta1 (12-15Hz); Beta2 (15-20Hz); Beta3 (20-30Hz); Gamma (30-45Hz).

• Signals which fall under Delta and Gamma frequency bands were excluded from the scope of interest due to a high chance of noise contamination.

• The imaginary coherences were selected as feature values which represent phase differences among the signals at locations specified by the 10-20 system.

• The feature values were then normalized at each frequency bands.

• Sensor-level imaginary coherence feature map (see figure 1 below) was yielded through horizontal concatenation of the normalized matrices.



Figure 1: The sensor level imaginary coherence feature map employed for training/testing of the model

- The class labelling was done through Amyloid PET results.
- $\bullet$  Data augmentation was performed on  $\beta\text{-Amyloid}$  positive class through splitting of the data in time series, with the aim to overcome the class imbalance.
- Sensor-level imaginary coherence feature maps were produced for each subjects, comprising the augmented dataset.
- $\bullet$  The final training dataset consists of 138  $\beta$ -Amyloid positive data and 143  $\beta$ -Amyloid negative data.

 $\bullet$  The final test dataset consists of 61  $\beta\text{-Amyloid}$  positive data and 33  $\beta\text{-Amyloid}$  negative data.

### Results

|                | Pred Amyloid + | Pred Amyloid - |
|----------------|----------------|----------------|
| Real Amyloid + | 57             | 4              |
| Real Amyloid - | 2              | 31             |

Table 1: Confusion matrix for test set classification

• The  $\beta$ -Amyloid screening model adopting machine learning algorithm has yielded test sensitivity at 0.934 and specificity at 0.939.

• 5-fold cross validation was performed on the training dataset, which returned the sensitivity at 0.884 and specificity at 0.923.

### Conclusions

• The machine learning model developed in this research achieved outstanding classification results.

• Such QEEG based model may sufficiently replace Amyloid PET for screening of the  $\beta$ -Amyloid plaque, resolving previously discussed disadvantages.

• Sensor level imaginary coherences are statistically more robust than source level imaginary coherences, free from errors accumulated during source location calculation process.

• Therefore, correct and appropriate application of the sensor level imaginary coherences may aid screening of several other neurological diseases.

Acknowledgement