
● Data & Pre-Processing

Tbl 1. the number of data

- Total 243 Eye-closed Resting-state EEG data 
- 80% data for Train, 20% data for Test
- 19 channels based on international 10-20 system
- Bad epoch rejection and ICA method using iSyncBrain®
- Absolute/Relative power of 19 channels and 8 frequency 
bands. Therefore, 304(2*19*8) features In total.

● Feature Selection & Modeling

Fig1. The schematic diagram of feature selection and modeling

- Goal 1 is to classify Normal Amyloid (+) vs Normal Amyloid (-)
- Goal 2 is to classify MCI Amyloid (+) vs MCI Amyloid (-)
- SVM (polynomial) based classification model
- Increasing the number of features from 3, and 4, then 5
- Features selection with Genetic Algorithm
- ensembled multiple models and build a scoring system

We tried all combinations of 3 features and selected top 
20% features that shows better accuracy [good features]. 
Then, only using these good features, we tried all 
combinations of 4 features and repeated same process.
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Introduction Results
● Alzheimer’s disease is one of the major cause of 
dementia. Currently, Beta-Amyloid is a representative 
diagnostic index of Alzheimer’s disease[1].

● Although Amyloid PET is commonly used to detect Amyloid, 
its high-cost and radioactivity restrict patients to take it[2].

● Researches have proven that EEG have potentiality as a 
biomarker and can be used to classify brain diseases[3].

● We found different QEEG pattern between Amyloid(+) and 
Amyloid(-) group, suggesting the validity of QEEG as a 
biomarker.

Methods

Conclusions
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Normal(+) Normal(-) MCI(+) MCI(-) total
146 34 29 34 243
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Fig 2. Models performance with different number of features

We found the average accuracy and AUC increased as 
the number of features Increased.

● We suggests Genetic Algorithms can be useful for 
feature selection of QEEG, in that it can reasonably cut 
the number of feature combinations in brain signals.

● We confirmed QEEG can be used as a biomarker for 
beta-Amyloid. As QEEG is more accessible than PET, 
QEEG biomarkers can reduce the cost of diagnosis. 
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Best Normal Model Showed 92.6% sensitivity, 89.0% 
specificity and 90.5% accuracy. Best MCI Model Showed 
82.5% sensitivity, 86.7% specificity and 85% accuracy. 
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Fig 3. Box plot of Amyloid classification score

Tbl 2. Confusion matrix of classification


